Multi-species nucleation rates in CLOUD

نویسندگان

  • J. Almeida
  • J. Curtius
  • J. Kirkby
چکیده

In the CLOUD experiment at CERN we have been investigating the chemical species that are most important to atmospheric new particle formation. Sulphuric acid plays a key role in aerosol nucleation, but other vapours and ions can strongly enhance the formation rate. Quantifying the contribution of each species and the conditions under which each one is important is a major challenge and requires sophisticated laboratory experiments. The CLOUD chamber, a 3m stainless steel aerosol chamber exposed to a pion beam from the CERN Proton Synchrotron, can create a precisely controlled atmospheric environment over a wide range of temperatures, ionisation states and gas mixtures, while keeping contamination levels extremely low. CLOUD has studied a range of vapour species at atmospheric concentrations, including, in various combinations, sulphuric acid, ammonia, dimethylamine and alpha-pinene. The effect of ions on the nucleation rates has been measured for all species since it is of considerable interest as a possible link between galactic cosmic rays and climate[1]. This work will present an overview of the nucleation rates measured in CLOUD and compare them with atmospheric observations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

Sensitivity of liquid clouds to homogenous freezing parameterizations

Water droplets in some clouds can supercool to temperatures where homogeneous ice nucleation becomes the dominant freezing mechanism. In many cloud resolving and mesoscale models, it is assumed that homogeneous ice nucleation in water droplets only occurs below some threshold temperature typically set at -40°C. However, laboratory measurements show that there is a finite rate of nucleation at w...

متن کامل

Analysis of feedbacks between nucleation rate , survival 1 probability and cloud condensation nuclei formation

10 Aerosol nucleation is an important source of particle number in the atmosphere. However, in 11 order to become cloud condensation nuclei (CCN), freshly nucleated particles must undergo 12 significant condensational growth while avoiding coagulational scavenging. In an effort to 13 quantify the contribution of nucleation to CCN, this work uses the GEOS-Chem-TOMAS 14 global aerosol model to ca...

متن کامل

Crystal size distribution in metamorphic rocks: an example for the relationship between nucleation and growth rates with overstepping

Crystal size distribution (CSD) in metamorphic rocks provide fundamental information about crystal nucleation and growth rate, growth time and the degree of overstepping. CSD data for garnet, staurolite, kyanite and andalusite crystals from the aureole demonstrate that the earliest formed of these minerals, garnet, has the highest population density and the shortest growth time. The last formed...

متن کامل

Analysis of feedbacks between nucleation rate, survival probability and cloud condensation nuclei formation

Aerosol nucleation is an important source of particle number in the atmosphere. However, in order to become cloud condensation nuclei (CCN), freshly nucleated particles must undergo significant condensational growth while avoiding coagulational scavenging. In an effort to quantify the contribution of nucleation to CCN, this work uses the GEOS-Chem-TOMAS global aerosol model to calculate changes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016